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FOREWORD

This report is the concluding technical document
required under contract NAS8-20238 ("Investigation of
Problems of Optimum Satellite Orbital Transfer and
Rendezvous").

The work described in this report was performed
by the Space Sciences Department of the Space and Infor-
mation Systems Division, North American Aviation, Inc.,
during a 14 month period commencing on June 29, 1965
and ending on August 30, 1966,
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ABSTRACT

Quasilinearization was employed to solve two orbital transfer
problems. The first involves a discontinuous two-point boundary value
problem which resulted from a variational formulation concerning optimal
orbital transfer. The boundary conditions were such that the transfer
trajectory's end points could be assumed to be at unspecified positions
upon arbitrary coplanar orbits. The vehicle was assumed to be thrust
limited and capable of controlling thrust direction and duration ('bang-
bang" throttle control). Through careful use of the guasilinearization
technique it was possible to determine trajectories that minimized the
fuel required for orbital transfer maneuvers which were accomplished in
a fixed time interval., It was found that accurate initial conditions,
which were derived from the corresponding optimal impulsive orbital
transfers, were required for convergence of the quasilinearization pro-
cess, An IBM 7094 double-precision computer program incorporating the
above techniques then was utilized to generate optimal transfers between
numerous pairs of arbitrary coplanar orbits. Using the resulting data,
it was possible to make a series of significant comparisons concerning
the velocity changes required for corresponding optimal finite-thrust
and optimal impulsive orbital transfers. Further numerical investigations
demonstrated the existence of optimal transfers between ''shallowly
intersecting" orbits which required only one thrusting period. These
maneuvers were shown to be analogous to the better known optimal one-

impulse maneuver.

- v-
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The second problem concerned finding impulsive transfers in the
general three~body problem. A computer program was developed by employing
the quasilinearization technique to solve the two-point boundary value
problem that occurs., The specified boundary conditions were the departure
point (position and velocity at some point along an initial orbit or tra-
jectory) and the arrival point (position and velocity at some point along
a final orbit or trajectory). It was also necessary to specify the trans-
fer time and the general nature of the expected transfer (e.g., forward
around the earth to retrograde around the moon). The problem was to find
the impulses required to complete the transfer. The required initial
estimate of the trajectory was produced by a patched conic trajectory

program, but it may also be supplied in as many as ten linear segments.
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Quasilinearization was employed to solve two orbital transfer problems., The first in-
volves a discontinmuous two-point boundary value problem which resulted from a variational
formulation concerning optimal orbital transfer. The boundary conditions were such that
the transfer trajectory's end points could be assumed to be at unspecified positions upon
arbitrary coplanar orbits. The vehicle was assumed to be thrust limited and capable of
controlling thrust direction and duration ("bang-bang" throttle control). Through careful
use of the quasilinearization technique it was possible to determine trajectories that
minimized the fuel required for orbital transfer maneuvers which were accomplished in a
fixed time interval. It was found that accurate initial conditions, which were derived
from the corresponding optimal impulsive orbital transfers, were required for convergence
of the quasilinearization process. An IBM 7094 double-precision computer program incorpor-
ating the above techniques then was utilized to generate optimal transfers between

numerous pairs of arbitrary coplanar orbits. Using the resulting data, it was possible

to make a series of significant comparisons concerning the velocity changes required for
corresponding optimal finite-thrust and optimal impulsive orbital transfers. Further
numerical investigations demonstrated the existence of optimal transfers between "shallowly
intersecting" orbits which required only one thrusting period. These maneuvers were |
shown to be analogous to the better known optimal one-impulse maneuver.

The second problem concerned finding impulsive transfers in the general three-body problem.
A computer program was developed by employing the quasilinearization technique to solve

the two-point boundary value problem that occurs. The specified boundary conditions were
the departure point (position and velocity at some point along an initial orbit or tra-
Jectory) and the arrival point (position and velocity at some point along a final orbit

or trajectory). It was also necessary to specify the transfer time and the general nature
of the expected transfer (e.g., forward around the earth to retrograde around the moon).
The problem was to find the impulses required to complete the transfer. The required
initial estimate of the trajectory was produced by a patched conic trajectory program,

but it may also be supplied in as many as ten linear segments.

=va-



INTRODUCTICN

During the past seven years the authors have participated in a
series of contractual studies of optimal orbital transfer and rendezvous.
Under the initial contract, NAS 8-4, work consisted of formulation and
parameter studies involving coplanar two-impulse transfer (Refs. 1 to 3).
The second contracted effort (NAS 8-1582) was devoted to developing
numerical methods for finding the absolute minimum two-impulse transfers
between arbitrary non-coplanar non-coapsidal elliptical orbits. This
work, which is documented in Refs. 4 to 13, led to several computational
methods for solving such problems. The third contract in this series
(NAS 8-5211) produced several refinements to the previously successful
numerical techniques (Refs. 14 and 15). It also led to the development
of a steep descent mumerical optimization program (Refs. 16 and 17). Using
this numerical program, it was possible to conduct a number of studies
which have now been published (Refs. 17, 18, 19 and 20). This contract
also produced a variational formulation of the finite thrust optimum
orbital transfer problem (Ref. 21). The formulation was programmed for
solution using an ordinary Newton-Raphson convergence technique which
was later found to be inadequate for this extremely sensitive problem.
The results of this third contract are summarized in Réf. 22,

Under the current contract (NAS 8-20238) effort was concentrated
upon solving the finite thrust orbital transfer problem and upon an in-
vestigation of impulsive transfer in the three-body problem. During the

course of the study both of these problems were satisfactorily solved

SID 66-1224
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by employing a mathematical technique known as quasilinearization (Refs.
23, 24 and 25).

This report presents the resuits of the finite thrust orbital trans-
fer study as Appendix A. Appendix A was previously distributed as a
separate document (Ref. 26). Appendix B contains a separate paper des-
cribing the formulation and computer program utilized to produce two-
impulse transfer circumstances in the three-body problem. Initial con-
ditions for this problem were obtained from a patched conic trajectory
program which was also developed as part of this contract effort.

During the past year it was also possible to update and revise
several of the computer programs for performing numerical studies of
two-impulse transfers in the two-body problem. These programs have

now been documented and are available for use (Refs. 16, 27, 28 and 29).

SID 66-1224
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RESULTS OF STUDY

The numerical results demonstrated that quasilinearization is a
powerful tool for the optimization of two-point boundary value problems.
This was true of both the two-body finite thrust and the three-body
impulsive transfer studies. In the two-body problem, it was found that
impulsive results offered a good first approximation to their finite
thrust counterparts. For this reason, it was possible to fully utilize
prior impulsive orbital transfer studies when generating finite thrust
trajectories about a single attracting center. This result also implies
that the impulsive three-body trajectories would be excellent first
approximations when seeking their finite thrust counterparts. Complete
details of this work appears as Appendices A and B.

The success of these studies strongly suggests that this work should
be expanded to include a three-dimensional formulation of the finite
thrust orbital transfer problem. Also, the three-body work should be
expanded to include a finite thrust formulation in three dimensions. In
both instances, the results and computer programs generated under the

current study should prove invaluable,

SID 66-1224



1.

2.

3.

5e

6.

7.

REFERENCES

Kerfoot, H.P., and DesdJardins P.R., "Analytical Study of
Satellite Rendezvous", North American Aviation, Inc., MD
59-462, (January 1960).

Kerfoot, H.P., Bender, D.F., and DesJardins, P.R., "Ana-
lytical Study of Satellite Rendezwvous" (Final Report),
North American Aviation, Ine., MD 59-2T2, (20 October 1960).
Kerfoot, H.P. and DesJardins, P.R., "Co-Planar Two-Impulse
Orbital Transfers," ARS Pre-print 2063-61, (9 October 1961).
DesJardins, P.R. and Bender, D.F., "Extended Satellite
Rendezvous Study" (Quarterly Report), North American Avia-
tion, Ine., SID 61-304, (1l September 1961).

DesJardins, P.R. and Bender, D.F., "Satellite Rendezvous
Study" (Second Quarterly Report), North American Aviation,
Inc., SID 61-459, (15 December 1961).

DesJardins, P.R. and Bender, D.F., "Satellite Rendezvous
Study" (Third Quarterly Report), North American Aviation,
Inc., SID 62-339, (15 March 1962).

DesJardins, P.R., Bender, D.F., and McCue, G.A., "Orbital
Transfer and Satellite Rendezvous" (Final Report), North
American Aviation, Ine., SID 62-870, (31 August 1962).
Bender, D.F., "Optimum Co-Planar Two-Impulse Transfers
Between Elliptic Orbits," Aerospace Engineering, No. 10,

P. 44 (October 1962).

SID 66-122k




10.

11.

13.

Bender, D.F., "Rendezvous Possibilities With the Impulse
of Optimum Two-Impulse Transfer," Advancements in Astro-
nautical Sciences (AAS), Vol. 16 {(Part One), pp. 271-291
(1963). (Published in "Progress Report #3 on Studies in

the Fields of Space Flight and Guidance Theory," MSFC,

NASA, Huntsville, Alabama, pp. 138-153, 6 February 1963).

McCue, G.A.,, "Visualization of Functions by Stereographic

Techniques," North American Aviation, Inc., SID 63-170,
(20 January 1963).

McCue, G.A., "Optimization by Function Contouring Tech-
niques," North American Aviation, Inc., SID 63-171, (10
February 1963). (Presented at 1963 ACM Conference,

27 August 1963).

McCue, G.A., "Optimum Two-Impulse Orbital Transfer and
Rendezvous Between Inclined Elliptical Orbits,” AIAA
Journal, Vol. 1, No., 8, August 1963. (Presented at AIAA
Astrodynamics Conference, 20 August 1963. Published in

"Progress Report #4 on Studies in the Fields of Space

Flight and Guidance Theory," MSFC, NASA, Huntsville, Ala-

bama, September 1963).

McCue, G.A., "Optimization and Visualization of Functions,"

ATAA Journal, Vol. 2, No. 1, (January 1964).

SID 66-1224



15.

16.

17.

18.

19-

Lee, G., "An Analysis of Two-Impulse Orbital Transfer,"
AIAA J., 2, 1767-1173 (1964). (Published in "Progress
Report #4 on Studies in the Fields of Space Flight and
Guidance Theory," MSFC, NASA, Huntsville, Alabama, pp.
167-212, 19 September 1963).

lee, G., "On a Restricted Comparison of Two-Impulse and
One-Impulse Orbital Transfer,'" North American Aviation,
Inc., SID 63-1026, (Published in "Progress Report #5 on
Studies in the Fields of Space Flight and Guidance Theory,"
MSFC, NASA, Huntsville, Alabama, 19 September 1963).
McCue, G.A., and Hoy, R.C., "Optimum Two-Impulse Orbital
Transfer Program," North American Aviation, Inc., SID 65-
1119, (1 August 1965).

McCue, G.A., and Bender, D.F., "Numerical Investigation of
Minimum Impulse Orbital Transfer," AIAA J., 3, 2328-2334
(December 1965).

McCue, G.A., and Bender, D.F.,, "Optimum Transfers Between
Nearly Tangent Orbits," AAS J., Vol. 13, No. 2, (March-
April 1966).

Bender, D.F. and McCue, G.A., "Conditions for Optimal One-
Impulse Transfer," North American Aviation, Inc., SID 64~

1859 (1 October 1964).

SID 66-1224



2l.

23.

2k,

25.

Bender, D.F., "A Comparison of One- and Two-Impulse Trans-
fer for Nearly Tangent Co-Planar Orbits,” (Published in
"Progress Report #5 on Studies in the Fields of Space Flight
and Guidance Theory," MSFC, NASA, Huntsville, Alsbama, (19
September 1963).

Jurovics, S.A., "Orbital Transfer by Optimum Thrust Direc-
tion and Duration," North American Aviation, Inc., SID
64-29, (12 February 1964).

McCue, G.A., Bender, D.F., and Jurovics, S.A., "Satellite
Rendezvous Study Summary Report,” North American Aviation,
Inc., SID 6L4-368, (10 March 1964).

Kalaba, R., Some Aspects of Quasilinearization, (Nonlinear

Differential Equations and Non linear Mechanics) New York;
Academic Press, Inc., pp. 135-146 (1963).

Bellman, R., Kagiwede, H., and Kalaba, R., "Quasilinear-
ization, System Identification and Prediction," RAND CORP.,
RM - 3812 PR (August 1963).

McGill, R. and Kenneth, P., "Solution of Variational Pro-
blems by Means of a Gereralized Newton-Raphson Operator,"”
AIAA J., 2, pp. 1761-1766 (October 1964).

McCue, G.A., "Quasilinearization Determination of Optimum
Finite-Thrust Orbital Transfers," North American Aviation,

Inc., SID 66-1278, (29 July 1966).

SID 66-1224



27.

28.

29.

McCue, G.A., and DuPrie, H.J., "Optimum Two-Impulse Orbi-
tal Transfer Function Conf;ourirg Program," Rorth American
Aviation, Inc., SID 65-1181 (1 September 1965).

McCue, G.A., Dworetsky, M. and DuPrie, H.J., "Fortran IV
Stereographic Function Representation and Contouring Pro-
gram,” North American Aviation, Inc., SID 65-1182 (1 Sep-
tember 1965).

McCue, G.A. and DuPrie, H.J., "Improved Fortran IV Function
Contouring Program," North American Aviation, Inc., SID
65-672, (1 April 1965).

SID 66-1224



APPENDIX A%

QUASILINEARIZATION DETERMINATION OF OPTIMUM
FINITE-THRUST ORBITAL TRANSFERS

*Note that this appendix is a separate paper having its own nomenclature,
illustrations, references, etc.
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ABSTRACT

Quasilinearization was utilized to solve a discontinuous two-point
boundary value problem which resulted from a variational formulation concerning
optimal orbital transfer. The boundary conditions were such that the
transfer trajectory's end points could be assumed to be at unspecified
positions upon arbitrary coplanar orbits. The vehicle was assumed to be
thrust limited and capable of controlling thrust direction and duration
("bang-bang" throttle control). Through careful use of the quasilineariza-
tion technique it was possible toc determine trajectories that minimized
the fuel required for orbital transfer maneuvers which were accomplished in
a fixed time interval. It was found that accurate initial conditions, which
were derived from the corresponding optimal impulsive orbital transfers,
were required for convergence of the quasilinearization process. An IBRM
7094 double-precision computer program incorporating the above techniques
then was utilized to generate optimal transfers between numerous pairs of
arbitrary coplanar orbits., Using the resulting data, it was possible to
make a series of significant comparisons concerning the velocity changes
required for corresponding optimal finite-thrust and optimal impulsive
orbital transfers. Further numerical investigations demonstrated the
existence of optimal transfers between "shallowly intersecting" orbits
which required only one thrusting period. These maneuvers were shown to

be analogous to the better known optimal one-impulse maneuver.
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I. INTRODUCTION

Certain realistic treatments of the optimum orbital transfer problem
lead to a variational formulation wherein the differential equations have
no exact closed form solution. Prior experience with the particular two
point boundary value problem considered here(l)indicated that it was
extremely sensitive and could not be solved by an ordinary Newton-Raphson
method. Reformulation and application of “quasilinearization"(2’3’4)
allowed the successful computation of optimal "finite~thrust" transfer
trajectories between arbitrary pairs of coplanar elliptical orbits. How-
ever, successful application of quasilinearization was found to depend
upon the proper use of initial conditions derived fram an optimum two-

impulse transfer maneuver.(5’6’7’8)
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II. THE OPTIMIZATION PROBLEM

The problem to be considered here involves transferring between a
pair of coplanar orbits defined by their semi-latera recta (pl,pz),
eccentricities (ej,ep) and arguments of perigee (wj,w,). What is required
is the determination of that trajectory which results in an orbital transfer
with minimum fuel expenditure. The formulation is a modified version of a
three-dimensional derivation originated by Jurovics(l) and is similar to
that presented by Leitmann.(9) Solution of this optimization problem in-
volves the minimization of a functional which is a function of only the
boundary values of the state variables: i.e. position, velocity, mass and

time.

The function to be minimized is the characteristic velocity:

G=cln:—z (1)
where,
G = Glx;0,x7) (2)

and, where the state variables are:
xy=r, B, F, g, m (3) _
In the above expressions c = effective exhaust velocity; r = radius,
# = central angle; m = mass, and the subscripts O and T refer to initial
and final points of the trajectory.
The rocket and its environment are defined in accordance with the
following assumptions:

1. The rocket is a variable mass particle. ¥

16 SID 66~1224



2. The thrust magnitude (F) is a linear function of the mass flow
rate (B):
F = cp = -ch (&)
3. The vehicle is capable of thrust direction and throttle control,
and the confrol is instantaneous.

L. Further, the transfer maneuver is between two orbits about a single

planet with a spherically symmetrical central gravitational field.

EQUATIONS OF MOTION
In polar coordinates (Figure 1), the two second order equations of

motion are:

r - r +-;'§=%c03v (5)

¥ + 2= =~ sinv (6)

-]

where,

p = gravitational constant

v = steering angle measured from local vertical
These equations may be reduced to first order form, where the new variables
pand y are defined as follows:

p= 1 (7)

y= # (8)

f>=x72-;§-+£mﬁcosv (9)

y= -3 . B gn, (10)
r b of

m= - (11)

17 SID 66-122l
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Figure 1 - Coordinate System Definition
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EULER LAGRANGE EQUATIONS

The optimum path must satisfy the above equations of motion. In
addition, for most conventional rockets, the solution is subject to the
following constraints:

¢ = constant (12)
Pmin = B = Pmax (13)

where ﬁmin= 0, and 5mx is specified.

In the problem considered here one utilizes the following additional

constraint to impose "bang-bang" control of mass flow rate:

p(p-p.) = © (14)

If G is to possess an extremumn subject to the constraints imposed by
Equations 7 to 12 and 14, one must require the first variation of the con-
strained functional to vanish. The following Euler-Lagrange differential

equations for the Lagrange multipliers result:

2 2p 2y cBsinv
Xy =- + - )\ - 1
1 =-N (7 -;3) 6(?- -Lz—mr ) (15)
. X3 = 0 (16)
. = - Ny
)‘h N + = (17)
2)\gP
%= TN AT T e
_ cp Ag sinv
Xy = [ N, cos v+ - ] (19)
The differential equation for k7 also may be written in the following
useful form:
X, = .E- [k + A ] (20)

19 SID 66-122



The "switching function" (k), which appears in Equation 20, governs

thrust on-off control and is defined as follows:

A4 Sin v
K= S (Lcosv + 22—y - (21)
m A r 7
where,
k> 0m8 = ﬁm (22)
k< O=8f = 0 (23)

Equations for the steering angle (v) are as follows:

sinv = =& (24)
v - X -

]

where
’ D Z 4 0% (26)

Clearly, the steering angle has no physical significance when the vehicle
is on a coasting arc.
Since the differemtial equations do not involve time explicitly,

one obtains a first integral (Hamiltonian):

ME £ N+ Mg+ N+ A = A (27)

where,

A

constant (28)
These last expressions may be used to replace one of the Euler-lLagrange
differential equations and thereby reduce the order of the system by one.
BOUNDARY CONDITIONS

Note that the system is described by 10 equations for the variables:

r, ¢) P Y, m’)‘l’)‘B”‘l.”‘é’M

20 SID 66-122



This system thus requires 10 boundary conditions. The seven specified by
the physics of the problem are:

P15€]1,w15P25€25w2,50
The rmiﬁng boundary conditions can be derived fram the transversality

condition:

T
dG+[ Mdr + AP+ nde 4 ady + hdm - Adt ]0= 0 (29)

One may then obtain the following additional boundary conditions:(l)

Ny = &= 5, =T (30)
T
dr + Ndf + Xdp + A = 0 (31)
[ M NP e ¢ Ny |

A somewhat different form of Equation 27 may also be derived: (1)
. * . - - T
[”‘1 P RN PNyt i ]0 = Bk (32)

From this form of the equation, it is clear that the Hamiltonian
(A in Equation 20) must be equal to Bk at the end points, Further, if
A #0att =0, then Equation 24 implies that k(0) = k(T).

Having obtained a system of 10 first-order ordinary differential
equations which must yield the required optimal trajectory over a
specified time interval, one next observes that the problem is of mixed
end-valus nature and only the five values of the state variables are
known at the initial point (or final point). However, it is well known that
the xi can be scaled by a positive constant.(9) Thus, by assigning an
appropriate initial value to )‘l s the number of unknown initial conditions

was reduced to four.

21. SID 66-1224



CORNER CONDITIONS

For this particular problem, the corner conditions are such that the
multipliers associated with each of the state variables and A, the first
integral, must have the same value immediately preceeding and following

(xi)_ = (’\1)+ (33)

A- = A+ (34)

22 SID 66-1224



ITI. QUASILINEARIZATION

Having obtained a nonlinear two-point boundary value problem, the
powerful method of quasilinearization(z) may be used to generate the re-
quired nuﬁerical solutions. The previously derived differential equations
may be written as a set of ten first-order equations, each of which may

be considered to be one component of the vector equation:

1%

X = g X (35)
where,
[~ n B 1
r P
# y
2 p g

y”© - 4+ —
P ?- n cos v
y - _Zpy + Cﬁ sin v

r mr
m -B
= s B = 2 21 2Py cp (36)
Xl 'Xk <y + ;3-> -)\6 (;2' - m? sin v>
2

¢ MM Prg
k - ﬁ (1‘)\1\1‘ + = - = )
N - + 2
(" kl r

2P
K6 - X3 - 2)7&!7 + -
N 0
I " _

23 SID 66-1224



Note that in the avove equations an expression for the switching
function (k) has been derived from Equation 20 and substituted for X7.
This substitution was useful since it replaced an unknown function with
one with properties partially defined by the optimum two-impulse transfer
maneuver. Since XB is constant throughout a given trajectory it may be
regarded as a parameter whose time history may be obtained without resort-
ing to numerical integration. In order to achieve computational economies
the computer program requirgd that x3 be assigned to the last position

in the vectors of Equation 36.

The quasilinearization method may be regarded as an extension of
the Newton-Raphson method for algebraic equations to ordinary differ-
ential equations. Suppose that the "n'th" approximation to the time
history of the solution vector, Z(n)(t) is known. A Taylor series
expansion about this approximation, truncated with linear terms, may

then be made to obtain the derivative of the (n + 1Jst approximation,
+(n+
(n+1).

~

N (n)
. (n+1 0gs (X*77)
¢ SO BT W PGB L L (37)
~ J J BXJ
J=1
i=1, 2...N
where N is the number of differential equations. This is the fundamental
2
equation of qnasilinearization.( 3) In this case the Jacobian matrix
of partial derivatives is rather involved (Eq.38, Fig.2). The more
lengthy partial derivatives appearing in the Jacobian matrix appear

as Equations 39.
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(n+1)

Because Equation 37 is linear in the xj , solutions may be added
to satisfy all the boundary conditions. By requiring a particular solution
to satisfy the known initial boundary conditions, it is necessary to gene-
rate a particular solution (P;) plus as many homogeneous solutions (Hij)
as there are unknown initial boundary conditions (B;). The correct number
of equations to solve for the combination coefficients, Cj’ in the remain-
ing four boundary conditions are thus obtained:

4
Bi(T) - Py(T) = jg CyHj4(T) , 1= 1,2, 3,4 (40)
1

(n+l1)

The (n+l)Yst approximation, x5 (t), is evaluated by summing the

stored values of Pi and Hij:
4
xTE) = B ¢ Y ey (8) 5 1=1, 2N (41)
=1

(2,3)

If the process converges it will do so quadratically. However,
in order for the process to converge, one must have a sufficiently accu-
rate first approximation, X(°)(t), to the time history of the solution
vector. Convergence of the process may be examined by evaluating the

following relationships at the end of each iteration:

(n)

™ Ly o x| 1 Py

) - x, )y (42)

i

i=l’ 2....N
The abrupt changes in mass flow rate require special consideration.
Whenever the switching function exhibits a zero ("switch point") the mass

flow rate (m = - ) must undergo a discontinuous change. This property
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can be expressed by employing a unit step function in the definition of
(10)
B:

p= | K] (43)
where,

u [k(“)(t)] = [::r 6[k(n)(t)] dk (44)

At a switch point (k(P) = 0, and t = t_) Equation 37 must be integrated

as follows:

{s+' ‘ts+ ‘ al ag.(x(n))
o (o), g (xn)y 4 z x, () () ) = g (45)
i its J J
te ts- =1 axj

i =l, 2...N

The gi(g(n)) term offers no net contribution and may therefore be excluded
from further consideration. Next, observe that at a switch point the
Jacobian matrix will have some non-zero terms appearing in the column
containing partial derivatives with respect to the switching function (k).
Note that this is only true at the switch points and that Equation 38 is

valid elsewhere. Thus, Equation 45 becomes:

(1) . | °
Axi”)— Jt

S

dt (46)

’ lk(ﬂ+l) - k(n)] o8, (X))
- ok

i=1, 2....N
Since the switching time is determined by the n'th iteration wherein

k(@ = o one obtains:

t ag, (x(n)
ax;(#11) - jﬁ g (o+1) _giff_.). dt, 1 =1, 2...N (47)
tg_ ok
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At this point it should be noted that only those terms in Equation 36
which contain mass flow rate will contribute to the solution at a dis-
continuity. Substitution of Equations 36, 43 and 44 into Equation 47 yields

expressions of the following form:

tgr K+
ax, D o s ) (T o j sle™ ) |acat (48
3 PR -’ts— dK - L 1
or, .
Axi(n+l) = Siﬁok(n+l) Ktﬁé[k(n)(t)] dt, i = 1,2...N  (49)
. S=

where the 5; represent arbitrary constants.
In order to integrate with respect to the argument of the delta

function one may adopt the following definitions:
_ -1
k = F(t), t=F (k) (50)

dt

I

4 71 (k) ak
dk

Equation 49 may now be rewritten and integrated with respect to k;

K+

Axi(n+1) _ Si‘aok(rﬁ‘l) Jk- 5 [ k(n)(t)] C% F—l(k) dk (51)
K+

Axi(“+l) = siﬁok("ﬂ) glté Jk_ 5[ k(n)(t) I dk (52)

Axi(n+l) = Siﬁok(n+l)/ k , i= 1, 2....N (53)

Equation 53 now may be applied to derive the following final

expressions for the contributions to the solution at a corner point:
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where,

Ap

Ay

A)\l

At

-BAt

.cpxb

At = sin v
nr

k(n+l)

e

During the integration of the particular and homogeneous solutions

required by Equation 40, k(n+l) will, in general, be non-zero at the

switch points determined from the n'th iteration.

The quantity, &t,

defined in Equation 58 may be regarded as an incremental change in the

length of a burn period called for since k(n+l) is now non-zero at the

switch points. The incremental changes defined by Equations 54 to 57

compensate for the changes which will result from these small changes in

burning time. The need for the absolute value sign can be established

by considering the physical implications of a non-zero value of k

points where k() = o,
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IV. NUMERICAL SOLUTION BY QUASILINEARIZATION

COMPUTATION TECHNIQUES

Equations 1 to 58 were programmed in FORTRAN IV for solution by
an IBM 7094 digital computer. A double precision integration program
(Ref. 11) employing Runge-Cutta starting procedures and a variable
step-size difference integration scheme was utilized. The current
approximation to the solution, E(n), as well as P and the 53’ were
generated by integration and stored at fixed tabular intervals. During
the integration it was necessary to determine values of the variables
between the tabular points. These intermediate values were obtained

(12)

by Sterling interpolation truncated with second differences. The
fifty equations for P and the EJ were integrated simultaneously, re-
quiring only one evaluation of g; and the Jacobian matrix at each
value of time (t). After the integration was terminated at the final
time (T) the combination coefficients, C4, were evaluated from Equation
(40), and the stored values substituted into Equation (41) to obtain
the new approximation: g(n+l).

Computation was saved by relaxing truncation error requirements
where possible. At the beginning of each iteration the best available
initial conditions were used for P. The contributions of the gj to
§(n+1) therefore diminished as the process converged. Thus, the accuracies
of the EJ were not as important as that of P.

Convergence of the quasilinearization process was tested by com-

paring the values of xi(n) and xi(n+l) at the storage interval according

to Equation 42. The entire process described above was performed by
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a general purpose quasilinearization subroutine which utilized double-
precision FORTRAN Iv_(ll)

INITIAL CONDITIONS

The extreme sensitivity of the orbital transfer maneuvers con-
sidered here was promptly discovered. For instance, small changes in
the durations of the thrust periods were found to produce large
variations in the trajectory. Such small variations would often cause
the process to diverge. It was therefore necessary to obtain a real-
istic approximation to the optimal trajectory prior to the initiation
of the quasilinearization computations.,

It was found that the optimum two-impulse orbital transfer yielded
an excellent initial approximation to its finite thrust counterpart.
Accordingly, an initial conditions subroutine which utilized a steep
descent numerical optimization program (Refs. 8 and 13) was employed
to generate an initial approximation to the trajectory: g(o). This pro-
cedure yielded excellent time histories for the state variables r,

#, p» ¥y and m. Utilizing Equation 1, and noting the impulses (velocity
change) given by the two-impulse program, it was possible to accurately
predict the duration of each "burn period". (Note that one first obtains
the change in mass assocliated with the burn period,and that one must
specify a set of rocket parameters; e.g. specific impulse, exhaust
velocity, mass flow rate, etc.) In order to generate the initial con~
ditions it was assumed that the impulsive take-off and arrival points
occurred at the center of each burning period.

To avoid having a thrust initiation or termination point occur at

t =0ort =T, a coasting arc of several hundred seconds duration
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was assumed to occur at the beginning and end of the final optimal
trajectory. Under this assumption it was a straightforward matter to
compute exact initial and final values of the first four state variables.
An initial approximation to the total time (T) required for the maneuver
was obtained by summing the transfer times corresponding to the three
impulsive coasting arcs.

Although the initial shape of the switching function (k) was un-
known the impulsive solution gave an excellent approximation to the
"switch points" (i.e., k = 0). In prior arguments it was established
that only these critical values of'the switching function are réquired
for the generation of g(k+l). One may verify this by referring to
Egs. 53 to 58 and by noting that the Jacobian matrix contains no partial
derivatives with respect to k except at a switching point. Note, however,
that Eq. 53 also requires an initial guess as to the value of k at the
switching points.

Having determined the time histories of the state variables and the
switching times, it is also necessary to supply initial approximations to
the time histories of the Lagrange multipliers. As previously noted, one
of the Lagrange multipliers can be employed as a scale factor. Therefore,

xl was assigned an arbitrary initial value. The following relationship

may then be constructed from Equation 31 by assuming that t = O at the
impulsive switch point.(7)

N = (-le- Y"B)/(F‘%&T + i) (59)
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The impulsive solution may be employed to determine approximate
values of r,p, ¥, P, y and v at the center of the initial burning
period. By presuming an initial value for X3 one may then extract the

resulting initial value for x6. An initial value for XL then may be

computed from the following expression which is a consequence of Equations

24, and 25:
6 (60)
= O
xh r tanv

Thus, the initial values of the Lagrange multipliers can be estab-
lished by utilizing the impulsive solution and guessing the ratio; hl/x3.
Time histories of the Lagrange multipliers then were produced by an
integration procedure which employed Equations 15 to 18 and utilized the
previously stored impulsive time histories of the state variables. Figure 3
illustrates the validity of this procedure for a typical computer run by
comparing the initial and converged time histories of several Lagrange
multipliers. The initial approximations to the state variables were con-
siderably better and, in most cases, differences between initial approxi-
mations and final converged values could not be detected when plotted to

the scale of Figure 3. The fact that the state variables were initially

well defined was important to achieving convergence of the quasilinearization

technique.

VARIABLE LENGTH STORAGE TAELE

Although straightforward application of quasilinearization will
result in a solution of the problems considered here, it was found
necessary to employ a number of refinements to assure accuracy and

proper convergence. For instance, when storing the tabular values of
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the solution l(n) for use in producing g(n+l) it was necessary to provide
a method of maintaining integration accuracy over all portions of the
trajectory. That is, it was found necessary to increase the data point
storage density during the burning periods. For this reason, the
quasilinearization process was constructed about a storage table having
variable storage intervals. Figure 4a illustrates this concept. The
basic quasilinearization subroutine described in Ref. 11 was programmed
to integrate over each segment of the table and to stop at the boundaries.
At this point a new storage interval would be introduced and the pro-
cess continued.

SHIFTING STORAGE TABLE

Because the "bang-bang" control problem is inherently discontinuous
at the corner points significant numerical problems are encountered. At
such points one enters a new flight regime wherein i(n) has entirely
different properties. For this reason, the performance of valid numerical
interpolation across a switching point is not normally possible.

As the quasilinearization process converges the switching times
indicated by the n'th iteration will not coincide with those given by
the n + 1'st iteration. If the switching point occurs between two table
entries it is necessary to perform forward interpolation to arrive at
appropriate stopping conditions and backward interpolation to arrive at
appropriate numerical values to restart the integration. Since two
different flight regimes are involved one finds that the interpolated
values at the switching point, in general, do not agree. In many instances
the above problem results in serious numerical errors or convergence

failure,
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One may employ another "trick" to insure numerical integration
accuracy at the corner points. After each iteration of quasilinearization
new switching times are determined which, in general, will not occur at
the previous tabular values. A new table then may be constructed wherein
the new switching times sre used to define the boundaries of each variable
length storage array. This makes it possible to perform a new iteration
of quasilinearization with the assurance that each stopping point coin-
cides with a table entry. This new table and its relationship with that
used in the prior iteration is illustfated in Figure 4b. Note that this
method eliminates the necessity of interpolating to obtain the values at
the stopping points. This numerical continuity across the corner points
was found to be essential for the accurate convergence of the orbital

tranasfers considered here.

SWITCH POINT ANALYSIS

As was pointed out earlier, the "bang-bang" control process produces
trajectories which are very sensitive to the initiation, termination and
duration of thrusting periods. It was therefore necessary to employ a
rather sophisticated process for determining and controlling the switching
times to be utilized in the determination of £(n+l)‘

A numerical procedure for determining the zeroes of the switching
function was employed at thé end of each quasilinearization iteration.

If the new switching times showed large deviations fram the previously
used values, the new times would.not be adopted. Instead, the program
would shift the thrust initiation and termination times by a small portion

of the indicated change.

38 | SID 66-122%



Newly determined switching times would be fully utilized only when
close agreement with the previous iteration had been achieved. In general,
such close agreement could only be expected to occur after the quasili-
nearization process had proceeded through several iterations. However,
once this requirement was met, the program was completely free to use the
switching times indicated by the n'th iteration during the computation of
the n + 1'st, The above programmed constraints forced the solution to
conform to impulsive initial conditions until the process had achieved
sufficient convergence to adequately control itself. Without this con-
straint and without the judicious use of the impulsive initjial conditions

it was usually impossible to obtain convergence.
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V. NUMERICAL RESULTS

The forementioned IBM 7094 double precision program was utilized to
generate transfers between arbitrary coplanar non-coapsidal orbits. Num-
erical results are best described by comparing the optimal finite thrust

solutions with corresponding optimal impulsive transfers.

CONTROL VARIAELES

As was previously noted, the state variable time histories produced
from the impulsive solution showed excellent agreement with the corres-
ponding values for the finite thrust maneuver. Similar agreement was
found for the control variables.‘ This is best illustrated by an example.
Initial, final and transfer orbits corresponding to an optimal finite-
thrust transfer are depicted in Figure 5. The orbit and vehicle para-
meters are as follows: p1 = 5,000 mi., pz 1- e,
wy =+90°, w, = +30°, p= .0001 my/sec. and initial F/W = 0.4. Figure 5 also

= 6,000 mi., e = 0.2,
indicates the directions and relative magnitudes of the two impulses

(E. , and F,). The transter orbit of the optimal finite thrust transfer
coincides with its impulsive counterpart when plotted to the scale of
Figure 5. The small arcs over which the engine is burning are also
noted.

Figure 6 presents a time history of steering angle, v s for the
orbit transfer maneuver depicted in Figure 5. Note that only a small
portion of the steering angle curve has physical significance. These
two portions of the curve are expanded in the inset diagrams of Figure 6.

The inset diagrams also give the impulsive steering angle for camparison
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with the finite thrust solution. For this intermediate thrust case, the
thrust initiation and termination times derived from the impulsive solution
differed by only a few seconds from those indicated by the quasilineari-
zation solution.

The switching function for this maneuver appears as Figure 7. It
is clear that the engine is burning for a small portion of the total
time required for the orbital transfer. In order to achieve adequate
convergence of the quasilinearization process the switching times must
be determined to approximately 0.001 seconds. Referring to Figure 7
and noting that the maneuver may involve several thousand seconds, one
obtains an appreciation for the accuracy which must be maintained.
Furthermore, when one considers that this accuracy must be maintained
during the computations inherent in Equation 21, it is clear that double
precision arithmetic is a necessity.

CONVERGENCE AND VALIDITY TESTS

Several tests of a solution's convergence and validity are avail-
able. First, because the best approximation to E(O) is utilized for
each iteration, the Cj appearing in Equation 4O should approach zero as
the process converges. This provides the first test of convergence.
Another test of convergence may be performed by noting successive values
of the gi given by Equation hé. During successive iterations the §i should
also approach zero. One should also observe the switching times approach-
ing appropriate constant values during successive iterations. Also, since
k must be zero at each switch point one should observe appropriate tabular
values of k becoming successively smaller with each iteration. All of

the above convergence criteria were achieved during the computation of the
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solutions presented here.

One may compute certain constants of motion as a test of the
solution's validity, accuracy, etc. For instance, the Hamiltonian which
is given by Equation 27 must remain constant. Of course, it is also
possible to compute energy and angular momentum along the coasting arcs
and note if these constants are really constant. For all of the results
presented here, solutions wherein energy and angular momentum remained
constant to more than eight significant figures were achieved. Similar
accuracy was achieved for the Hamiltonian. Although this extreme accuracy
would not ordinarily be necessary for engineering studies, it was re-
quired for the accurate comparison of finite thrust maneuvers and their
impulsive counterparts.

As a final test, the converged solution X(m) (0) , was utilized as
initial conditions for a straightforward integration of the Euler Lagrange
differential equations. The solution produced by this method was then
compared with that generéted by quasilinearization. In all cases this
test confirmed the validity of the quasilinearization solution.

MINIMUM FUEL WITH FINAL TIME OPEN

Because the transfer time (T) derived from the impulsive solution
is slightly nonoptimal additional computations must be performed to
determine that trajectory which is time-optimal as well as fuel-optimal.
Since the Hamiltonian may be thought of as the partial derivative of final
mass with respect to T it is necessary to adjust T until the Hamiltonian
approaches zero. This was accomplished by perturbing T and computing an
additional fuel-optimal trajectory. This required several additional quasi-

linearization iterations. The Hamiltonian corresponding to each of the fuel-

45 SID 66-122L



optimal trajectories was examined and simple linear extrapolation was used
to predict a new value of T corresponding to A = 0. Thus, it was possible

to compute a trajectory for which T was "locally" optimal.

AV _REQUIREMENTS (IMPULSIVE THRUST vs, FINITE THRUST)

Numerous optimal trajectories were computed in order to produce a
comparison of optimal impulsive transfers and corresponding finite-thrust
maneuvers. Figure 8 compares the velocity change (AV) required for
finite-thrust and two-impulse maneuvers over a wide range of initial
thrust-to-weight ratios (F/W). It was produced by beginning with the
transfer maneuver depicted in Figure 6 and parametrically varying the
specific impulse (note that P was held constant). The original log-
log plot of this data showed no deviation from a straight line (parebola) over the
range shown. The fact that the impulsive orbital transfer is a very
close approximation to the finite thrust maneuver is verified by the small
percentage differences in Figure 8.

Another interesting comi:arison was produced by varying the relative
perigee angle (Aw) of the two coplanar elliptical orbits of Figure 6.
Figure 9 demonstrates that the difference in velocity change required for
impulsive and the finite thrust maneuvers exhibits a strong dependence upon
Aw. The curve is divided into two regimes corresponding to intersecting
and non-intersecting orbits. Near the value of Aw which corresponds to
tangency (Aw = 53°. 1301) the curve abruptly, but continuously, changes.

This particular phenomenon is best explained by reference to Figure 10
which contains curves for the two-impulse and finite thrust maneuvers as
separate plots. Figure 10 concerns a small range of Aw over which the

orbits are "almost tangent". Since it was known that the class of "almost
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tangent" orbits produced a number of interesting results (Refs. 7 and 8)
considerable effort was devoted to accuracy in examining these critical
orientations. Note that the two curves are nearly coincident as long as
the orbits do not intersect and that the curves become separate as inter-
section deepens. This sudden diverging of the two curves in Figure 10
explains the abrupt change noted in Figure 9. The magnitude of this
difference depends upon the particular rocket parameters employed (e.g.,
specific impulses, mass flow rate, etc.).

In Rets. 14, 15 and 16 the existence of an optimal one-impulse
maneuver was discussed. The two-impulse curve shown in Figure 10 con-
tains a small region over which a one-impulse transfer between the two
orbits is optimal. The finite thrust curve is composed of a number of
points vhich are designated one burn maneuvers or two burn maneuvers.
Note that an optimal one burn maneuver also exists over a small range of
Aw. Thus, one obtains conditions which are again analogous to those
found for impulsive transfef.

As in the impulsive case, the maneuvers represented by points
directly on either side ot the one burn region are characterized by
entirely different steering angle, and thrust time histories. To the
left of the one-burn region the first burn period is rather small and
the thrust for both burns is in the forward direction. To the right of
the one-burn region the second burn period is very small and its thrust
direction opposes the vehicle's velocity vector. Figure 11 presents the
switching function time histories associated with each of three kinds
of finite thrust maneuvers considered in Figure 10, For the two burn

transfers the duration of the smaller burn periods was a fraction of a
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second as compared to about 300 seconds for the larger burn period. Some
solutions which were near the boundary of the one-burn region exhibited a
second burn period of .002 seconds duration and smaller. The extreme
numerical accuracy required to produce the results of Figure 9 and 10

should be evident.
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V1. CONCLUSION

The numerical results demonstrate that the guasilinearization
technique can be a powerful tool for the optimization of "bang-bang"
control problems. However, it appears that a good first approxima-
tion to the solution is required to insure convergence. In general, it
appears that impulsive orbital transfer maneuvers provide an excellent
approximation to their finite thrust counterparts. For this reason
most preliminary engineering design studies could be performed with
simple economical impulsive transfer optimization procedures, thus
avoiding a more time consuming and difficult finite-thrust optimiza-

tion.
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APPENDIX B¥*

TWO-IMPULSE TRANSFER IN
THE THREE-BODY PROBLEM

#Note that this appendix is a separate paper having its own nomenclature,
illustrations, references, etc.
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g5-8

u,v,w,V

Xy¥52

X X

NOMENCLATURE

Angles of Perigee and Perilune (Figure 4 )

Combination Coefficients of Homogeneous Solution Vectors

Earth-Moon Distance (Semi-~Major Axis)

General Symbol for Expression for Time Derivative
of 52 Column Vector

Universal Constant of Gravitation Times Mass of Earth
plus Moon

Homogeneous Solution Vector (of Equation 19)

Unit Vectors Along x,y,2z

Impulse
084
Jacobian Matrix —
8Xj

Jacobi Integral

Particular Solution Vector (of Equation 13)
Distance to Earth

Distance to Moon

Time (Independent Variable)

Time of Travel on Transfer Trajectory
Velocity Vector Components and Magnitude
Position Vector Components

General Symbol for Dependent Variable,Column Vector
of Dependent Variables

Convergence Values for X, a Column Vector
MAX X(n)(t) - X(n+l)(t) , a Column Vector
T

The Ratio Mass Moon to Mass Earth plus Moon
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w Angular Velocity of the Moon in its Orbit

Subscripts
o For Departure Point at t = 0
T For Arrival Point at t = T

For Transfer Trajectory

ct+

Superscript represents the iteration number, e.g. X(n)

Underline signifies a vector in three dimensions.
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ABSTRACT

A computer program for finding two-impulse transfers between
given terminal points in a fixed time in the three~body problem has
been developed. The only restriction is that the third body‘which
is imagined to be a space ship, exerts a negligible attraction on the
two large centers. It generates a patched conic to use as an initial
trajectory and uses the quasilinearization process to correct the
trajectory so that the two-point boundary value problem is solved. The
program and its use are described in detail and preliminary results

showing excellent convergence properties are presented.
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I. INTRODUCTION

Suppose it is desired that a spaceship on some orbit in Earth-
Moon space transfer to a new orbit by means of a two-impulse maneuver.
While this problem is topologically similar to two-impulse transfer in
the two-body problem there are two significant differences from the
computational and analytic points of view. In the first place the
orbits are not generally cyclic and points along them cannot be re-
presented by five orbital elements and an angle. The six components
of position and velocity are used instead. The second major difference
is that the given information concerning the departure and arrival points
does not permit one to describe transfer orbits as a known function of
any one parameter. In general there is a single infinity of orbits
through two given points and in the two-body case one can choose, for
example, the semi-latus rectum of the transfer orbit as the parameter.
It is then possible to immediately compute the orbit, the velocities
at both ends, and the impulses. In the three-~body case the author
chose to span the infinity of orbits by using time to transfer as
the parameter. To obtain the orbit, the velocities at both ends, and
the impulses, is a major problem. It was the aim of this portion of
the work to provide a computer program to compute these quantities.
That is, from the given departure point (Bo in Figure 1), the given
arrival point (BT in Figure 1), and the given time interval (T), the
program is to determine the transfer orbit trajectory, the velocities at

both ends, and the impulses. It was possible to accomplish this for
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the reduced three-body problem in which the third body does not affect

the motion of the two primary bodies. The two large bodies may move

in either circular or elliptical orbits about their center of mass.
This program represents the first necessary step in a longer

range problem which is the numerical analysis of two-impulse transfers

in Earth-Moon space. Now that it has been developed a systematic study

of two-impulse transfers can be undertaken.
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II. PROBLEM FORMULATION

The computational problem inyolved is a highly non-linear two-point
boundary value problem and the method of solution utilizes a generalized
Newton—Raphson(l) technique which is called quasilinearization.

In the complete program as it is described below the input and
output coordinate systems may be centered at the Earth, the Moon, or
their barycenter and the systems may be rotating or inertial. However,
the computations are all managed in the rotating system centered at the
barycenter and the problem will be described in this system. The equa-
tions of motion are easily derived using the Lagrangian procedure. Extra

terms involving w occur since the rotating system usually does not

rotate uniformly. We find:

5 EG(x=(1-§)D)  (1~WG(x+D) .

U = 2V + WX = ——m—m—m—m— e —————— QY (1)
-3 3

. WGy (1-wey

v = =2uu + w2y - — e ——— - WX (2)

s> r

. ~-uGz (1~w)Gz

v = — - — (3)
x = u (4)
y = v (5)
z = w (6)

As shown in Figure 1 the xy plane is the plane of the Earth-Moon motion
and the x axis is directed toward the instantaneous position of the moon.
G is the universal gravitational constant times the total mass of the
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Earth-Moon system, { equals the mass of the moon divided by the total
mass of the system, D is the Earth-Moon distance (or a semi-major axis
of the orbit if it is elliptical) , and wis the angular velocity of the
system. For the restricted problem in which the two primaries are
assumed to be in circular orbits the equations simplify somewhat since
w = 0 and they possess a well known integral, the Jacobi integral,
which is

k=-v2 , 20-WG 26 22 g2 )

r s

Two different unit systems are provided for in the program. One
is based on the metric system using kilometers for distance and seconds
for time. The second system uses lunar units for which w = 1 rad per

unit time, D = 1 lunar distance, and G = 1 (1.d. )3/(U.T. )2

SPACESHIP

/‘\ MOON -\ By
- X

B, = DEPARTURE (uo, Vor Wor %or Yor Zo) EM =D

By = ARRIVAL  (u1, v, WT, XT, /T, z7,) EO = uD

Figure 1. The Rotating Coordinate System
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The problem is described as follows. Given the initial position
(Xgs¥0s2Zo)s the final position (xp,yp,zr), the time (T), and the general
shape of the desired transfer trajectory, we wish to find the trajectory
and the velocities at t = 0 and t = T. That is,we wish to find the
velocity (uto’vto’wto) at t = O which will cause the vehicle to arrive
at (xT,yT,zT) at the time T later. The solution is to be accamplished
using the quasilinearization precedure which is described in Appendix A
Section IJI, and in Ref. 1. It is seen that this set of equations

(Egs. 1 to 6) is of the form of Equation 35 (App.A), and that the feasi-
bility of using the procedure depends upon finding analytic expressions
for the derivatives of the right hand sides (gi) with respect to the

six variables (Xj), i.e., upon obtaining the Jacobian matrix, J. This
is easily accomplished and the matrix for the general three-body tra-

Jectory is given in Equation 8.

0 20 0 WP-A+E  ¢+By Bz
. 2
2w 0 0 -wtBy ( w "é) Cyz
J= (Ji j) 0 0 0 Bz Cyz ~A+Cz?
(8)
_ <2g> _ |1 0 o o0 0 0
ox
J 0 1 0 0 0 0
0 0 1 0 0 0
i i
where
1~
L= [——“ + =l (9)
2 s |
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B - 3(1-p)G (x + D) + 3pG(x~(1-p)D) (10)
r 85
o= 3(-w6 | 3G (11)
r s
2
g o4 JQTWGGHDN 3B L D) (12)
r5 35
(n+1)

The (n+l)'th iteration X , is obtained as follows fram the
n'th iteration, X(n), and the approximate differential equation (Eg. 37,

App. A in matrix form):

i(n—}-l) — g(x(n)) + J(X(n)) . (X(n+l)- X(n)) (13)

A particular integral, P, is obtained from the previous time history by
integrating Equation 13 starting with the initial values from the last
(@) , (n) _ (n)

iteration (u, ",v," ’,W, »X0s¥os%o)¥. At the same time a set of three

homogeneous solutions to

=3 w (14)
are generated with initial conditions (Vl,0,0,0,0,0)*, (O,VZ,O,O,O,O)*,
and (0,0,V.,0,0,0)%. The linearity of Equation 7 in X'®1) allows the
new iteration, Equation 10, to be P plus a linear combination of the

three solutions.

(n+1) _
X = P+, + cH, + c3H3 (15)

The coefficients (c 2,c3) are determined by requiring the solution to

1°°¢
satisfy the boundary conditions at the final position (xT,yT,zT).

#The vectors X,g,H and £ are really column vectors but the initial values
are printed here as rows for convenience in typing.
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As explained in Appendix A (p. 13) convergence of the process is
examined by evaluating the maximum change (at any point) between successive

iterations in each coordinate (Equation 42, App. A).

£ = mx [x® @) - x(m ) (16)
T

Only when every camponent of £ has satisfied given conditions is the
procedure declared to have converged.
At the end of each iteration the impulses are computed at the

beginning and at the end of the trajectory. We use

- (uo(n)_ )i + (v, ()= Vo) (“b(n)“ w,) k (17)

|

(uT(n)_ upli + (VT(n)' v o+ (WT(n)- wy) k (18)

H
]

=
i

I+ Ip = VI - I + V- L (19)

If the process converges within the assigned limit of iterationms
the program transfers to a mode in which the actual equations are inte-
grated with the complete set of initial conditions as determined by
QASLIN. The vector, £, now gives the differences between the final
iteration and this integral and it will indicate how well this final
integral represents the solution to the desired problem since the
differences between the coordinates of the final point reached and those

of the given end point are included in the comparison.
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IITI. COMPUTER PROGRAM DESCRIPTION

A computer program written in double precision FORTRAN IV language

has been developed for solving the problem of finding two-impulse trans-

fers between given points in Earth-Moon space. It was developed to pro-

vide wide capability and has the following set of general properties:

a. The initial and final conditions can be given in any two of a series
of coordinate systems centered at the Earth or the Moon or the bary-
center. Orbital elements for close Earth orbits and/or close Moon
orbits are permissible,

b, Two unit systems are presently available: metric with kilometers and
seconds or lunar units with w = D = G = 1 (see Equation 1-6 above).
The total trip time, however, must be given in hours. Provision for
a third system exists in the program. The actual constants used are
provided in a single short subroutine and can easily be changed.

¢c. Real time with the initial epoch in modified Julian Days may be used
and the Moon's position will be determined by the program. The secular
motion of the lunar orbit node and perigee during the trip time are
neglected. Or, an artificial reference time may be used with the moon's
initial position anywhere in its orbit.

d. The orbits of the Earth and Moon may be assumed to be circular or

elliptical.

A block diagram of the overall computer program is shown in Figure 2.
The general operation of the program is clear from this diagram and the

details of using the program are described below under the following
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READ CONTROLS

‘ MP

READ DATA

* 1PUT

SET UNITS AND CONSTANTS

‘ UNITS

PRINT DATA AND CONSTANTS

CHANGE DATA AND

‘ MmP

EARTH-MOON POSITIONS
AT START AND END

* EMOON

TRANSFORM BOUNDARY
CONDITIONS TO ROTATING FRAME

‘ TRNFRM

PRINT BOUNDARY VALUES
AND CONTROL SUMMARY

‘ MP

SET TIME STORAGE POINTS

SET QASLIN CONTROLS

‘ SETUPT

‘ MP

INITIAL TIME HISTORY

‘M‘

QASLIN ITERATION

‘ QASLIN

TEST CONVERGENCE SET PRINT AND
ITERATION CONTROLS

‘ QASLIN

COMPUTE IMPULSES AND PRINT

RESULTS OF ITERATION

IF CONVERGED  OPUT

INTEGRATE EQUATIONS OF MOTIONJ

< SET NEEDED CONTROLS
NUKAS
LIMIT NOT
EXCEEDED
TEST
IF NOT
NUMBER
CONVERGED " o e

LIMIT EXCEEDED

USES LAST TIME HISTORY

NEW DATA

NEW DATA AND CONTROLS

AND PRINT RESULTS OF
INTEGRATION
I QASLIN-OPUT
TEST FOR NEW
CASE
MP
EXIT

Figure 2 - Flow Diagram For Two-Impulse Computation
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headings:

1. Input Data Coordinate Systems
2. Constants

3. Data Entry

L. Program Controls

5. Time History Storage

6. Initial Time History

7. Subroutine QASLIN

8. Program Output

This program has been designed with a great flexibility for input
conditions. Unfortunately, at this moment the program is so close to
exceeding the allowable storage on the IBM 7094 that it has been found
necessary to make use of two slightly different versions. These are
obtained by using dummy subroutines when a job is being sent which does
not use a particular section. Since the portion of the program for the
computations of the initial time history is used only once for a given
case and is independent of the later iteration process it is believed that
an overlay process can be developed which will require very little extra
computer time, This would allow a further increase in the total number

of time storage points if accuracy requirements should demand an increase.
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1. Input Data Coordinate Systems

As already mentioned, the initial and final boundary conditions may be
given in Earth centered, Moon centered, or barycentric systems. These are
specified by the values ICORC(I) = J where: I = 1, 2 for initial, final
conditions; and J = 1, 2, 3 for Earth, Moon, barycenter. A second integer
IROTS(I) further identifies the systems according to the scheme shown in

Table 1.
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TABLE 1. COORDINATE SYSTEM FOR INPUT BOUNDARY CONDITIONS
ICORC(I) J=3
= J=1 J=2 Barycenter
IROTS( Earth Centered | Moon Centered |Centered
A
Rotating 1 | x axis toward x axis opposite|x axis
System moon - xy plane| earth toward moon
is LOP Xy plane is LOP|xy plane is
10P
A
2 | x axis toward x axis toward |x axis
non moon's orbit moon's orbit toward
rotating node on eclirtic| node on lunar [moon's
system Xy plane is 1OP | equator orbit node
Xy plane is LOP lon ecliptic
Cartesian
boundary 3 | x axis toward X axis toward ([not used
conditions vernal equinox | node
Xy plane is Xy plane is
ecliptic lunar equator
4 | x axis toward
vernal equinox | not used not used
xy plane is
equator
orbital
elements 5 | same as 2 same as 2 not used
for
boundary
conditions 6 | same as 3 same as 3 not used
l 7 same as 4 same as 4 not used
73
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2. Constants

The constants used in the program are listed in Table 2. Most of them
were obtained from the American Ephemeris and Nautical Almanac. Mean Rate
(w), semi-major axis (D), and G are adjusted to satisfy o = G/DB.

TABLE 2., LUNAR ORBIT AND ASTRONOMICAL CONSTANTS

Eccentricity = . 054900489

Mean Orbital Rate

Incl. LOP to Ecliptic

Incl., LOP to Lunar Equator

Incl. Ecliptic to Earth's Equator
Semi-major axis

Gravitational Constant Times
Total Mass

Ratio Mass Moon/Total Mass
Ref. Date. JD 2,439,000.5
Asc, Node at Ref. Date
Asc. Nodal Rate

Perigee at Ref. Date
Perigee Rate

Mean Anocmaly at Ref. Date

Mean Anomaly Rate

%

13.17639 65268 °/day = w
5.1453964°

6.6804°

23.444,36° (Epoch of 1950)
384747.87 km = D
403505.3 km'/sec® = G

1/82.30 = M

Aug. 28,1965 O hr. U.T.
69.3226°

- .0529539222°/day
56.5280°

.16435 80025 °/day
41.1600°

13.06499 24465 °/day
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3. Data Entry

The procedures used in suppliying controls and data to the program are

shown in Tables 3 and 4.

The controls shown in Table 3 are read by the

main program and the data shown in Table 4 are read by the subroutine

INPUT. The cards of Table 4 follow those of Table 3 with no separation

in the deck.
TABLE 3, INPUT CONTROL CARD FORMAT
Card No. Format Fortran Symbol Identification
1 6D12.8 XT(1)-X1(6) XI are initial values for
homogeneous solutions (there
are 10 max.) in units desir-
. ed.
2 - 4D12.8 XI(7)-X1(10) XFRR = controls NOSTEP if
NOSTEP = 0
El12.8 XERR NOSTEP = No. of steps per
time storage interval.
314 NOSTEP,NINTPF1, NINTFl1 = 1 + No. of time
N(4) sections(max. 10)
N(4) = Print control
3 6E12.8 RHOS(1)~RHOS(6) RHOS are convergence tol-
erances on variables
4 6E12.8 RHOS(7)-RHOS(12)
5 6(E9.3,13) TSUBT(I),KSUB(I) Time (in hours) at section
breaks in time history
I=1, NINTPI Step nmumbers from beginning
(max.value KSUB(NINTPI)) =
125
75
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TABLE 3., con't.

Card No. Format Fortran Symbol Identification
6 1216 N(3),NREAD,NQ1 N(3) = No. of iterations
ISETUP,NDIF, allowed.
JN(L) - (7) NREAD, NQ1l, ISETUP not used.
NDIF = No. of differences,
3 max. allowed (but see
notes).
JN{(1) = No. of dimensions
(2) = Flag for Special
problems
(3)-(7) = not used
7 6E12.8 SPARE (1) - (6) Used to transfer information
to subroutines XINM and
those it calls (first time
history section).
8 6D12.8 DPI (1) - (3) Increments in initial,
DPF (1) - (3) final positions;
9 6D12.8 DVI (1) - (3) initial, final velocities;
DVF (1) - (3)
10 4D12.8 DTI, DTF, initial, final times; two
DVARI, DVAR2 other variables for cases
using last time history.
4L16 NCM,NICH(1)~(3) NCM = total number cases
based on the initial problem.
(max is 30)
NICH(1) = control for next
case; NICH(2),(3) = not used.
11 3612 NN(3),IDTI(J), NN(J) = case no. (not used)
IDTF(J), IDPT(J), TI(J)
IDDF(J),ICO(J) IDTF(J)
J=1, NCM IDPT(J) Integral multipliers
IDDF(J) for increments
ICO(J) These can be -9 to
99.
Extra
cards
as
needed
for
integers
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TABLE 4. INPUT DATA FORMAT

Card No.

Format

Fortran Symbol

Identification

D1

D2

b3

D4

D53

216, 413,

~/
£10

3E12.8
6E12.8

6E12.8

6E12.8

1814

LORM, IRAT, ICORC(I),
IROTS(I), ICOEL,
TMORTA

EXTRA(12) - (14)
PI(1) - (3)

VI(1) - (3)
VF(1) - (3)

TI, TF
ATMA (1) - (3)
EPOCH

N1, NC,
M(1)-(15)

LORM= 1 Lunar unit = 2
metric units = 3 not
specified

IRAT= 1 real time= 2
artificial time

ICORC, IROTS for specifying
coordinate system (see
Table 1) ICOEL = 1 moon's
orbit circular = 2 moon's
orbit elliptical

IMORTA = moon's initial
position given in mean (=1)
of true (=2) anomaly.

not used

Initial, final position
vectors (If orbital elements:
a, e, incl.)

Initial, final velocity
vectors (If orbital elements:
perigee, node, angle from
node).

Initial, final times' (Hours)
N.B. TI must = TSUBT(1l) but
these do not have to be zero
TF must = TSUBT (NINTP1)
Moon's initial position:
node, perigee, anomaly (Deg)
Epoch of time scale for TI
and TF in MJD for real time
cases.

N1= Number of variables

NC =0

M(1) = no. of points to be
connected by linear segments
for variable numbered I
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TABLE 4., INPUT DATA FORMAT con't.

Card No. Format Fortran Symbols Identification
D63 12D6.3 Z(K), W(K) Z(K), W(K) = (time, value

of variable). Limit is
50 pairs

Extra

cards

as

needed

#When using linear segments as the initial estimate of the trajectory.
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4. Program Controls

Use of the program controls and the data input procedure is des-
cribed below. Many of the storage dimensions of the variables are those
required by subroutine QASLIN which can manage a total of 12 variables
having 10 initial boundary conditions to be found. In the two-impulse
probiem there are either 6 variables with 3 unknown initial boundary
conditions for a three-dimensional case or 4 variables with 2 unknown
initial boundary conditions for the two-dimensional case. The numbering
of the variables then proceeds as x,¥,2,Xx,y,% Or X,y,x,y for the three
and two-dimensional situations. The data and controls along with the
boundary conditions in the rotating system are printed on the first two
pages of output. A sample is included as Figure 3. The card numbers
1,2,3,4, refer to the cards D1, D2, D3, D4 of Table IV.
A list of variables and their definitions follows:

X1(1) These are the values Vy, V,, V3 etc. of the
non-zero initial values used for the series of
homogeneous solutions as described in the text
following Equation 1l4.

XERR The step-size or equivalent, NOSTEP, is
determined from the 5th root unless NOSTEP
is given directly.

NOSTEP The number of integration steps per time
storage interval. This can be as large as
desired but a maximum of 3 is suggested since
the second order interpolation on the previous

time history uses values at the storage points.
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NINTP1

N(4)

RHOS(12)

TSUBT(I), KSUB(I)

N(3)

NREAD,NQ1, ISETUP

NDIF

The total time of the trajectory can be divided
into as many as 9 sections in each of which the
step-size interval is constant. NINTP1l number
of such sections plus 1.

Print control (each integer above O adds the

tems listed to the ocutput)

e

O = Final solution is only printed

1 = Time history at end of each iteration

2 = Partial integral (P) and H's during
integration

The values of the differences of the variables

to be compared with the vector £{. Convergence

is said to have occured when for every component

€ < P. The units must correspond to those

computed by the program as no conversions are

used.

The boundaries of the time storage sections and

the corresponding step numbers (times in hours).

The maximum number of iteraiions allowed for

the QASLIN routine.

Not used.

Number of differences used in the Adams-

Moulton integration (3 maximum allowed). If

larger than 3, 3 is assumed and 4th order

Runge-Kutta-Gill integration will be used for

NDIF steps before the program switches to the
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JN(1)
IN(2)

JN(3) - (7)

SPARE(1) - (6)

SPARE(1)

SPARE(2)

SPARE(3)

SPARE (4)

SPARE(5)
SPARE(6)

Adams-Moulton integration for the remainder of
the time.

Number of dimensions of problem (2 or 3).
l-normal problem

2-special problem setup. (Dummy at present)

Not used

Used for transfer of information to XINM and the
subroutines it calls. (The initial time history
section).

If negative the linear segmented input routine
is called. If positive, used to give conic
center of initial point when barycentered
system is used for initial conditions, i.e.,
when ICORC(1) = 3.

Used to give conic center of final point when
barycentered system is used for final conditions;
i.e., when ICORC(2) = 3.

Angle of perigee of earth centered eilipée
(measured c.c.w. from direction opposite the
moon) (see Figure 4).

Angle of perilune of moon centered conic,
measured c.c.w. from X axis. (see Figure 4).
RLIM = SPARE(5)*D (see Figure 4).

Not used.
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DPI(K), DPF(K)
DVI(K), DVF(K)
DTI, DTF
DVAR1, DVAR2

NCM

NICH(1)

NICH(2), (3)

NN(J)

IDTI, IDTF, IDPI,
IDPF, ICO

N1

NC

M(1)

Increments for changes in boundary conditions

for new cases based on the previous case., For

each new case each variable new value = old value

plus increment *ID XX (IDPI is used for both
DPI and DVI and similarly for IDPF), DVARI is
increment in lunar position, DVAR2 not used,
K=1, 2, 3

Maximum number of cases based on a given solu-
tion (maximum is 30).

Control for new case

1 = new data and new controls

2 = new data only

3 = exit

Not used

Not used except that for NN(NC) = 81, 82

ICOEL is set to 1, 2.

All dimensioned 30, as is NN. These are
integral multipliers for increments in corres-
ponding quantities and they can be from -9 to
99.

The number of variables of the problem.

This must equal O. Other values are for a
capability of the subroutine XILS not now
required by this program.

The number of points that determine the linear
segments for variable numbered I. This is one

more than the number of segments desired.
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2(x), W(K)

(Time, Value) pairs. Note that the time must
be in the units called for by the program and
that the pairs for each variable are grouped
together, i.e. the first M(1l) pairs refer to

the M(1)-1 sections for the variable p or Xx)
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5. Time History Storage

At the moment the maximum number of storage points is set at 125.
Since the QASLIN integration procedure is capable of handling a change in
step-size it is permissible to divide the total time and the 125 points
into sections of constant step-size as in Figure La or 4b, page 37,
Appendix A, This is desirable so that when near the earth or moon a
small step-size can be used for accuracy because the forces of attraction
are large and vary greatly over short distances. Over the intermediate
distances longer step-sizes will give equivalent accuracy. The optimal
use of the available steps is a subject for study after the program is
running. The total number of steps might be increased somewhat but this
consideration, as noted above, will require some streamlining of the
program so as not to exceed core or the use of an overlay maneuver on

the computer. Very large increases in step-size between sections has

been found unsatisfactory in that the extrapolation for new large intervals

is very much less accurate than the computation for the previous steps.

It is best to keep the step-size change to a factor of two to four.
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6. Initial Time History

In order to begin the quasilinearization process it is necessary to
generate an initial guess for the time history of all the variables (X).
In many cases this can be very crude but for highly sensitive and ex-
tremely non-linear problems the first guess may have to be carefully
made in order to obtain convergence on the desired solution. Two-impulse
transfer in the three-body problem presents such a situation if the tra-
jectory sought is to transfer from the space near one body to that near
the other.

The motions envisaged for study so far have been those fairly close
to the lunar orbit plane (LOP). The motion out of the plane has been
assumed to be linear and decoupled from the motion in the LOP, but a
sinusoidal form could be utilized with very little additional programming
if it is needed.

Three approaches for obtaining a first time history in the LOP have
been utilized in this study. The first was an attempt to find a simple
two-for-one Lissajous figure with variable amplitude to obtain an approxi-
mate trajectory. This form did succeed in the case tested but required
several iterations before the trajectory was really close to convergence.
In addition, it was felt that because one has to put in arbitrary varia-
tions in the velocity formulae to approximate the lunar trajectory
velocities more realistically, the technique may not be very satisfactory.

With the hope of reducing the number of iterations required for
convergence, patched conic procedures were then setup for the first time

history along with controls so that the various types of Earth to Moon,
Earth-Earth, Moon-Moon and Moon to Earth transfers could be studied.
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In addition a linear segmented time history program allowing up to 50
pairs of points to produce linear segments for all variables was available
and it was adopted for use in this program. All three schemes have been
made to yield satisfactory first time histories, however, because of its
artificiality the first scheme has, for the present at least, been dropped
from the program.

Only one comparison between linear segmented and patched conic cases
has been made so far and this was for an Earth to Moon transfer requiring
149 hours. The linear segments for the trajectory were chosen to re-
present as closely as possible the results from a portion of a run made
using the Fehlberg three-body problem integration program developed at
MSFC. Eight iterations were needed to accomplish convergence to a
vector of values .00001 1d/ut, .00001 1d/ut, .000001 1d, .0OOOOL 1d.

The very same problem using the patched conic routine likewise required

8 iterations to the same degree of convergence and it did not require any
previous knowledge of the trajectory except the general shape, i.e. that
it is retrograde around the moon. Consequently, it is concluded that the
patched conic technique is the most effective one to use.

The patched conic scheme has been programmed for Earth to Moon
transfers with retrograde motion around the Moon, and for Earth-Earth
transfers in which both the initial and final points are on orbits around
the Earth. In all cases the motion is considered to be on a conic section
in the rotating system, that is, the computations are performed in the
standard rotating system and the fact that it‘is not inertial is ignored.

The specific details to be supplied to the patched conic routine for

Earth to Moon trajectories are the pericenter angles Al,Az, and RLIM as
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shown in Figure 4.

% //
/
/
/
7/
UM L
p
/D |
Lé X
o _/ !
Ay M
o MOON CONIC
1
EARTH ELLIPSE

NOTE: Py AND P2 ARE PERIGEE AND PERILUNE

Figure 4. Patched Conic Gecmetry for Earth to Moon Transfers

These quantities are supplied through the use of SPARE(1l) as follows:

.
I

SPARE(3) = Angle of Perigee (Pl) in Deg.

A, = SPARE(4) = Angle of Perilune (P2) in Deg.
RLIM = SPARE(5)#D
The semi-major axis of the Earth section conic is chosen by means of the
formula
a = (.712 - (TF - TI - 80)% ,001l.)*D l.u.

This was developed to give a reasonable value for an eighty hour trip
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to the Moon and slightly higher semi-major axes for shorter trips. This
scheme was chosen rather than one assuming that the period should be
proportional to the trip time, since this calls for a variation in "a"
of the proper direction as far as energy is concerned. Finally the
eccentricity is determined from the initial point since the true ancmaly
is known.

The Earth section conic is followed until the distance from the
Earth exceeds the value RLIM. Then the previous point (L) and the
final one, A = BT are used to determinethe lunar conic. Since perilune
has been chosen the lunar conic is now fixed and its elements are deter-
mined. The program can manage either an ellipse, or a hyperbola for this
conic., The mean anaomaly rate is taken to be the mean anomaly difference
between L and A divided by the remaining time to go, thus assuring arrival
at A at the proper time. Although this orbit may be traversed at an
improper rate, the velocity time history contains the velocity components

corresponding to the proper rate.
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7. Subroutine QASLIN

A double precision subroutine for managing a quasilinearization
operation as outlined in Section II above has been developed by McCue
and Radbill (Ref. 2). The details of its use in the present program are
given in Section III (Table 3) and Section IV under the items listed for

the first six control cards.
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8. Program Output

As shown in Fig. 3 , the output consists first of the input data in
its entirety and the boundary conditions which include the initial and
final positions of the Moon in its orbit as well as the boundary values
for the departure point and arrival point of the space ship inthe rotating
barycenter system.

In case the initial time history is generated by using conic sections,
the orbital elements of the conics are printed. The next item of output
is the initial time history (if called for) which is printed by QASLIN
according to the value of N(4) as explained in Section IV (see also
Table 3, card 2).

Then follow the values (at t =0) of the Jacobian (J), the derivatives
(gi), and six other quantities including the distances to the Earth and
Moon printed by the subroutine JACOB which computes them., This has
served as a means of checking the computation of these quantities and it
remains in the program.

The amount of output per iteration is controlled by N(4) as is ex-
plained above in Section IV except that when integrating the equations of
motion with the converged values for the initial velocity, the print of
the time history is produced by the subroutine JACOB. Whenever a time
history is printed (except for the initial time history) the value of the
Jacobi integral (Eq. 7) for restricted three-body problem is computed and
printed. The degree to which this value stays constant (when o =0) is
an indication of the accuracy of the integration techniques.

The minimum output at the conclusion of an iteration consists of a

matrix giving the equations to be solved for ¢ 3 (of Eq. 14), the

1,62,0
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values of ¢ and the vector £ . In addition, for this problem the

12223
impulses at both ends are determined and printed each time an output time
history of the variables is called.

The details of the output can be varied by controls in the various
subroutines as is indicated by the current usage and the existence of
unused items on the data cards and in the labelled common regions of the

program, When the applications of the program are more fully developed

an output plan giving only the needed details can be used.
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PRELIMINARY RESULTS

Two different transfer orbit cases have been used so far in testing
the program. The first is a case using lunar units, the boundary condi-
tions for which were taken from two pointsalong a periodic trajectory
computed with the double precision Fehlberg program. The second is a
69.8 hour flight from very near the earth to very near the moon using
real time and either two or three dimensions. The input data of Figure 3
are for this second case in three dimensions.

As has been indicated the variation in the value of the Jacobi
jntegral along the trajectory may be taken as a measure of the accuracy
of the trajectory. The values found for the final time history as given
by the quasilinearization technique and thosefound by direct integration
of the original equations with the initial conditions found agree to the
accuracy of the comparisons given below and thus no distinction between
them is made. In Table 5 are shown the results for two runs using the
Fehlberg case (Case 1). It can be seen that the very large increase
in the time step-size in the first of these runs leads to a substantial
discontinuity in the value at the change over point. The second run
shows that this difficulty has been almost completely corrected by
keeping the step-size ratio under 4.

In order to maintain a constant value of the integral near the Earth
or Moon it is clear from this table and other similar cases that a amall
step-size is needed. In this case also it is seen that the integration

scheme apparently affects the variation when near the Earth. The step~
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Table 5.

Behavior of Jacobi Integral Case 1
(Value from Fehlberg run 2.08602504 (1d)</(ut)?

Time Step Value of Integral
Integration Used at boundary steps 2 Distance to Earth
Technique* Number Steps | (with note) (1d/ut)<| (/and Moon) 1d
Runge 9 min 2.049 522 L0617
Kutta for 20 steps (high 27)
Gi1l low 05
2.049 545 .0860
220 min 2.085 619 .1935
for 40 steps| (rapid rise then
nearly constant)
2.086 201 1.210/.215
—
Adams- 7.5 min 2.087 L35 .0617
Moulton for 24 steps |fhigh 7 810
low 4 29
2.086 036 .0875
16.8 min 037 .0973
for 25 setps | (low 020)
023 .270
]
60 min 024 .291
for 20 steps 029 .58,
#*(See note on | 120 min 029 .600
NDIF in for 20 steps 029 .943/.618
Section 4)
210 min 029 .966/.602
for 20 steps 030 1.203/.236
38.4 min 030
for 15 steps | 2.086 030 1.210/.215
95
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sizes of the second run in Table 5 appear to be satisfactory for the
intermediate regions.

In the case of the second run of Table 5, the convergence criterion,

§ , for the difference between successive iterations was set at 1072
1d/ut for each velocity component and at 10"6 1d for each position
component, Convergence was obtained in 7 iterations, each of which
required very nearly .15 minute of computer time. In addition about .17
minute was required for the initializing process including the genera-
tion of the initial time history as a patched conic. Table 6 shows the
behavior of the total impulse value and the convergence measure for the
last three iterations. The convergence measures given are the larger of
the two velocity and position components of the vector £ . It can be
seen that the convergence rate is extremely good for the last few
iterations and that the values obtained for the impulse likewise show
strong convergence to a final value,

The computer time used is one of the output quantities at each
iteration and thus it is possible to indicate how the computer time is
used. Preliminary time studies showing several runs of the two tests
cases are given in Table 7 along with some details which influence the
time. There are included three runs based on the runs directly above in
the table in which some moderate change in a boundary condition is made
and for which the previous time history is modified for the new initial
time history. As expected this new case is rapidly solved. Thus, the
procedure can be used for impulsive transfer studies and can be developed
into a search program for finding optimal impulsive transfers in the

three~body problen.
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TAELE 6, IMPULSE AND CONVERGENCE MEASURE

Iteration Total Impulse Convergence
Number (1d/ut) Measure
Vel.(1d/ut) Pos. (1d. )
5 .0276 4243 389 2.2x10~2 2,9x10~4
6 .0276 409l 2633 9.8x10~> 9.5x10~7
7 .0276 4094 2084 |  5.4x1077 1.42x10™10
(1 1d/ut = 1.02km/sec)
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CONCLUSTION

A double precision computer program which uses quasilinearization
to find impulsive transfers between given terminals in the three-body
problem has been shown to give accurate seolutions with considerablé speed.
However, there are still three items to be completed before the program
can be generally useful: (1), further tests will be needed to determine
more precisely the controls and limits needed to produce results satisfying
a given accuracy requirement; (2), the development of initial time history
sections for Moon to Earth trajectories and for lunar orbit changes is
needed, and (3), the management of the entire initial time history section
for the first case of a series should be controlled by means of an over-
lay process on the computer, thus, allowing an expansion in the number

of points that can be stored for the time history.
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